Efficient Synthesis of Peptide and Protein Functionalized Pyrrole-Imidazole Polyamides Using Native Chemical Ligation

نویسندگان

  • Brian M. G. Janssen
  • Sven P. F. I. van Ommeren
  • Maarten Merkx
  • Eric C. Long
چکیده

The advancement of DNA-based bionanotechnology requires efficient strategies to functionalize DNA nanostructures in a specific manner with other biomolecules, most importantly peptides and proteins. Common DNA-functionalization methods rely on laborious and covalent conjugation between DNA and proteins or peptides. Pyrrole-imidazole (Py-Im) polyamides, based on natural minor groove DNA-binding small molecules, can bind to DNA in a sequence specific fashion. In this study, we explore the use of Py-Im polyamides for addressing proteins and peptides to DNA in a sequence specific and non-covalent manner. A generic synthetic approach based on native chemical ligation was established that allows efficient conjugation of both peptides and recombinant proteins to Py-Im polyamides. The effect of Py-Im polyamide conjugation on DNA binding was investigated by Surface Plasmon Resonance (SPR). Although the synthesis of different protein-Py-Im-polyamide conjugates was successful, attenuation of DNA affinity was observed, in particular for the protein-Py-Im-polyamide conjugates. The practical use of protein-Py-Im-polyamide conjugates for addressing DNA structures in an orthogonal but non-covalent manner, therefore, remains to be established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo imaging of pyrrole-imidazole polyamides with positron emission tomography.

The biodistribution profiles in mice of two pyrrole-imidazole polyamides were determined by PET. Pyrrole-imidazole polyamides are a class of small molecules that can be programmed to bind a broad repertoire of DNA sequences, disrupt transcription factor-DNA interfaces, and modulate gene expression pathways in cell culture experiments. The (18)F-radiolabeled polyamides were prepared by oxime lig...

متن کامل

Solution-phase synthesis of pyrrole-imidazole polyamides.

Pyrrole-imidazole polyamides are DNA-binding molecules that are programmable for a large repertoire of DNA sequences. Typical syntheses of this class of heterocyclic oligomers rely on solid-phase methods. Solid-phase methodologies offer rapid assembly on a micromole scale sufficient for biophysical characterizations and cell culture studies. In order to produce gram-scale quantities necessary f...

متن کامل

Alternative heterocycles for DNA recognition: the benzimidazole/imidazole pair.

Boc-protected benzimidazole-pyrrole, benzimidazole-imidazole, and benzimidazole-methoxypyrrole amino acids were synthesized and incorporated into DNA binding polyamides, comprised of N-methyl pyrrole and N-methyl imidazole amino acids, by means of solid-phase synthesis on an oxime resin. These hairpin polyamides were designed to determine the DNA recognition profile of a side-by-side benzimidaz...

متن کامل

Cyclic pyrrole-imidazole polyamides targeted to the androgen response element.

Hairpin pyrrole-imidazole (Py-Im) polyamides are a class of cell-permeable DNA-binding small molecules that can disrupt transcription factor-DNA binding and regulate endogenous gene expression. The covalent linkage of antiparallel Py-Im ring pairs with an gamma-amino acid turn unit affords the classical hairpin Py-Im polyamide structure. Closing the hairpin with a second turn unit yields a cycl...

متن کامل

Highly efficient synthesis of DNA-binding polyamides using a convergent fragment-based approach.

Two advances in the synthesis of hairpin pyrrole-imidazole polyamides (PAs) are described. First, the application of a convergent synthetic strategy is shown, involving the Boc-based solid phase synthesis of a C-terminal fragment and the solution phase synthesis of the N-terminal fragment. Second a new hybrid resin is developed that allows for the preparation of hairpin PAs lacking a C-terminal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015